Design Optimization using Ti-6AL-4V Alloys

Ashwin Kumar


With an aging population, war, and sports-related injuries, there is an ever-increasing demand for hard tissue replacements, such as bone. A common alloy known as Ti-6Al-4V is used in such tissue replacement and is well-tolerated in in-vivo conditions. Recently, however, there has been great concern on the dissolution of aluminum and vanadium ions into the body fluid and the possibility of a toxic result, which is caused by poor integration with the human environment. Without the ability to attach and surround the bio-materials with osteoblast cells, the surrounding tissue will recede from material, release ions or debris, and thereby require immediate revision surgery. In order to reduce this effect. It is necessary to nullify factors that can be linked with poor osseo-integration. Laser surface processing creates a physical texture on Ti-6Al-4V alloys and has been hypothesized to improve bone integration and tissue growth on metallic implants. This form of engineering will be used in this study whose goal is to find the optimal laser processing parameters, based upon laser fluence values, to improve Ti-6Al-4V alloys bio-compatibility. Contact angle, surface energy, and roughness measurements were taken. Through Taguchi method-based response surface analysis, the optimal parameter of 2250W by 1000mm/s was concluded.