

Accelerated Stress & Reliability Testing for Software and Cyber-Physical Systems

Jeremy Straub

Department of Computer Science, North Dakota State University jeremy.straub@ndsu.edu

Overview

- Introduction to the domain and the problem
- Background and review of prior work
- Testing approaches
 - Virtual time testing
 - Quantity-based testing
 - Combined software / cyber-physical system testing
- Case study
- Discussion of enhancements

Introduction

- What is a cyber-physical system
 - Combines software and real world actuation / sensing
- What challenges does testing a cyber-physical system present?
 - How do you test both the hardware and software in an accelerated manner?
 - How do you guarantee reliability across testing assumptions?

Background – Cyber-physical Systems

- Rajkumar, et al. suggest that cyber-physical systems represent a new "computing revolution"
 - They combine:
 - hardware actuation
 - sensing
 - other capabilities
 - With software system:
 - decision making
 - data storage
 - other benefits

Background – Cyber-physical Systems

- Cyber-physical system examples, use in:
 - automotive and aerial transportation
 - power grids
 - Healthcare
 - scientific discovery
 - emergency response
- Basic cyber-physical systems are very common and they're getting progressively 'smarter'

Background – Testing Autonomy

- Cholewinski, et al. use one system to validate another
- Billings, et al. self play testing
- Wotawa, et al. mutation of manually created test cases
- AdiSrikanth, et al. autonomous creation of base test cases

What Exactly is the Problem?

- Long term operations
 - System must operate (potentially without human help or service) for an extended period of time
 - Hardware must work
 - Software must work
 - These mean different things ...
- How do you test physical component performance and software long-term operations concurrently?

Virtual Time Testing

- Approach for testing software
- Aims to simulate use over an extended period of time
- May make use of more robust hardware than the production system.
 - Its, thus, able to run more commands at a faster rate
- May compress operations on production hardware if there is lots of time between operations

Quantity Based Testing

- Approach for testing physical mechanisms
- Based on identifying duty cycle of piece of equipment / mechanical structure / etc.
- Test the number of required actuations / stress applications / etc. over lifetime (with margin for error)
- Consider other factors (such as deterioration over time, etc.)

Combining the Two Approaches

- Even with a combined technique, one cannot expect to fully rapidly test a cyber-physical system
- Increasing testing speed limits the amount of 'real world' operating conditions the hardwaresoftware system is exposed to
- The combined approach provides matching simulated input to both hardware and software components simultaneously

Combining the Two Approaches (cont.)

- Testing scenarios must be developed, based on functional and non-functional requirements
 - Scenarios must electronically and physically stimulate and cause actuation of the cyber-physical system
- Complex intersections of numerous factors must be considered to determine if the testing plan has flaws or bad assumptions
- Requires synchronization between hardware and software simulation units

Case Study: Long Duration Space Mission

- Scenario: long duration space mission
 - Typical of planetary science missions
 - Missions of this type have been performed previously
 - Historically, they have not been as autonomous as future missions will be
- It will evaluate efficacy, demonstrate solution gaps

Voyager Spacecraft (image from jpl.nasa.gov)

Case Study – Testing Plan

Requirements

- System will run continuously for years
- Continuously collecting data, some changes decision making
- No direct human access for maintenance or configuration changes

Testing plan

- Unit (hardware, software subsystems) testing
- Integration testing
- Accelerated hardware (quantity) / software (virtual time) testing
- Custom designed engine to simulate providing data, physical environment
 - Test to see if data is incorporated correctly

Case Study - Evaluation

- Several types of results
 - Independent hardware / software problems (or not)
 - Integration problems (or not)
 - Independent hardware / software long duration problems (or not)
 - Problems detected via the simulation (or not)
 - Utility of these test results is highly dependent on the validity of the simulation (i.e., the assumptions used to create it)
 - Thus, there is no testing 'panacea' proposed

Autonomous Testing and Analysis

- Autonomous testing can augment or replace manual and automated testing
- It could:
 - Expand on human testing
 - Take human-determined values as starting point, add nearby
 - Explore problem space
 - Identify other potential problem areas (random or informed)
 - Observation based
 - Observe behavior (user, attacker, etc.) and generate cases

Onboard Maintenance System

- Using the information gained through testing, the creation of an onboard maintenance system may be possible
 - Uses detected faults, knowledge of resolution
 - Implement pre-planned responses or use knowledge base to prevent / resolve issues
- Accelerated testing-gained information and resolutions identified are key to informing operations of this system

Conclusions and Future Work

- An overview of accelerated testing approaches for cyber-physical systems has been presented
- Prior work has been discussed
- Issues with conventional testing techniques have been considered
- A hybrid testing approach has been proposed and evaluated
- Future work: further evaluation of the approach

Thanks & Any Questions?

